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Abstract. In this paper, a distributed selectsort algorithm and a parameterized selectsort algorithm are presented 
to be applied on distributed systems for cases when N >> P where N is the number of elements to be sorted and 
P is the number of processors in the system. The distributed system considered in this paper uses a broadcasting 
channel for communication between processors. We show that the number of messages required for the 
parameterized selectsort algorithm is independent of N and is of complexity O(P), which is optimal in a 
distributed system with P processors. Furthermore, the amount of communication required in terms of elements 
is N + O(P 3) and the computation time complexity is O((N/P)lgN + P21g(N/P)). Hence, when N >/p3, the 
computation time complexity is O((N/P)lgN), which is optimal using P processors. In addition, this 
parameterized algorithm provides us with a parameter K such that by choosing the value of K allows us to trade 
among processing requirement, memory requirement, and communication requirement. It is shown that this 
parameterized algorithm can reduce the communication requirements significantly while only slightly increasing 
the computation requirements. 

Keywords. Broadcast, Communication bit complexity, Communication element complexity, Communication 
message complexity, Computation time complexity, Delimiter. 

1 Introduction 

For  algorithms applied on a dis tr ibuted system, the t ime required by the algori thm normal ly  
depends on two issues. One issue is the computat ion t ime requi rement  and  the other is the 
communica t ion  t ime requirement.  In  m a n y  dis t r ibuted systems, the t ime taken by computa t ion  
is much less than the t ime taken by communica t ion ;  hence, the c ommun i c a t i on  requi rement  is 
usually accepted as the performance measure of dis t r ibuted algorithms. 

Further,  the time spent on communica t ion  has two major  factors. One  factor is the time 
required to prepare messages for sending and  to process messages after receiving. We call this 

the message processing t ime. The message processing time includes packetizing a message before 
sending and  unpacket iz ing a message after receiving and  the time spent  on error detect ion and  
recovery. Another  factor is the t ime required in t ransmi t t ing  messages. We call this the message  

transmission t ime,  which is the t ime required for a message to travel across the communica t ion  
network. Hence, the message processing time required by  an algori thm depends  on the n u m b e r  
of messages created by the algori thm and  the message t ransmiss ion time required by an 
algori thm depends on the n u m b e r  of bits t ransmit ted  by the algorithm. In  some systems, the 
message processing time is no  smaller than  the message t ransmiss ion time. Therefore, in 
measur ing the communica t ion  complexity of an algorithm, we have to look at bo th  the message 
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processing time requirement as well as the message transmission time requirement. That is, we 
would like to reduce both the number of messages required by the algorithm and the number of 
bits required to be transmitted among processors. In other words, if the number  of bits required 
to be transmitted is the same, the performance of the algorithm will be better if fewer messages 
are incurred. 

The distributed selectsort sorting algorithm presented in this paper  wants to sort N distinct 
elements with P processors assuming that these N elements are evenly distributed among all P 
processors, i.e. there are N / P  elements in each of the processors. We assume there are P 
processors and Pi denotes the i th processor. Without loss of generality, we assume all N 
elements are distinct in this paper. In cases when there are elements with the same value, we 
can append the station number  to the element to break the equality. The purpose of this 
algorithm is to sort these N elements and to store the result in the P processors. That is, all 
elements in each processor are sorted; further, all elements in Pi are smaller than all elements 
in Pi+l- Hence, Pp contains the largest N / P  elements. Therefore, the sorted N elements are 
placed in processors P1 to Pp in an increasing order. 

For the rest of the paper, we denote the number  of messages required to be transmitted by 
an algorithm as the communication message complexity and denote the number  of bits required 
to be transmitted as the communication bit complexity. As usual, we denote the time required 
for computation as the computation time complexity. Further, since the basic entity considered 
in this paper is an element, we define communication element complexity as the number of 
elements required to be transmitted by the algorithm. Clearly, if there are N elements to be 
sorted, each element can be represented by k = lgN bits, then the communication bit complex- 
ity is simply k times of the communication element complexity. In this paper, we will use the 
communication element complexity as the performance measure instead of using the communi- 
cation bit complexity. 

There have been many works in distributed sorting algorithms [1-7] among which [1] and [2] 
will be briefly described here since they are also applied on a broadcast network. [1] gave an 
algorithm which made use of a broadcast communication network to implement a distributed 
sorting algorithm. The advantage of their algorithm was that, regardless of the number  of 
processors used, the algorithm had an average communication element requirement as 23N. 
Note that sorting in a broadcasting network requires a communication element requirement of 
at least N since every element must be broadcasted at least once in the worst case so that it can 
be sent to the processor where it should reside in the final sorted distributed lists. The 
disadvantage of this algorithm is that each broadcast message contains only one element. 
Hence, this algorithm incurs 3N messages. 

[2] gave another distributed sorting algorithm which also made use of a broadcast  communi- 
cation network using more than one channel. This algorithm achieved higher concurrency by 
using multiple communication channels. However, this algorithm had a communication ele- 
ment requirement of 4N and required O ( N )  messages. 

For the parameterized selectsort sorting algorithm presented in this paper, the communica- 
tion message complexity is O ( P )  and the communication element requirement is N + O(p3) .  
For cases when N >> P, our algorithm requires much less communication requirement than 
those in [1] and [2]. Moreover, the computation time complexity is O((N/P)IgN + PZlg(N/P)); 
hence, when N>~ p3, the computation time complexity is O((N/P)lgN), which is optimal 
using P processors. 

This paper is organized as follows. In Section 2, we first present a distributed concurrent 
selection algorithm. This algorithm is later applied in Section 3 to obtain a distributed 
selectsort sorting algorithm where the number of messages sent is much smaller than that in [1] 
and [2]. We then modify this algorithm into a parameterized algorithm in Section 4. The 
parameter provided in the algorithm allows us to trade among communicat ion requirement, 
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computation requirement, and memory requirement. It is shown that a slight increase in 
computation requirement saves us a lot in communication requirement. The conclusion is 
presented in Section 5. 

2 The distributed concurrent selection algorithm 

We first describe the distributed concurrent selection algorithm. We assume that each 
processor contains N / P  sorted elements in its local list. This algorithm will select concurrently 
P -  1 elements with P -  1 specified rankings. Some similar works are presented in [8-10]. 
However, our algorithm selects P - 1 elements concurrently. 

The approach used in this algorithm is a combination of counting and binary searching. We 
first explain how counting is used. If P, wants to find out the overall ranking of its mth locally 
ranked element with value X, it broadcasts X to all other processors using the communication 
network. Every processor except P; will then find out how many elements in its local list are 
smaller than X and will then send this number  in a message to P; through the broadcast 
network. After receiving all these P -  1 messages, P; adds up all these numbers from these 
messages to find out how many elements stored in other processors are smaller than X. It  then 
adds m to this number  to obtain the overall ranking of X. 

In the following we show how binary searching is used. If Pi wants to find out whether its 
local list contains an element with an overall ranking n, P; first takes its entire local list as the 
working list and finds out the overall ranking of the median element in the working list using 
the counting method just described. If the overall ranking of the median element is greater thaon 
n, then we take the first half of the current working list as the new working list and repeat the 
process. Or, if the overall ranking of the median element is smaller than n, then we take the 
second half of the current working list as the new working list and repeat the process. This 
procedure repeats until either the element with an overall ranking n is found or P; finds out 
that its local list does not contain the element with an overall ranking n. 

To accomplish the selection in this algorithm to find P - 1 elements with P - 1 specified 
rankings concurrently, every processor sends messages in turn according to its station number  
until the algorithm finishes. Each message sent contains P ( P -  1) elements grouped into P -  1 
fields with P elements in each field. We denote these P(P - 1) elements as E H, El2  . . . . .  Eap, 
E21 , E22 . . . . .  Ezp  . . . . .  E ( p _ l ) l ,  E ( p _ l )  2 . . . . .  E~p l)p. The first subscript denotes the field num- 
ber and the second subscript denotes the ordering of that element in that field. The P elements 
in the ith field (1 ~< i ~< P -  1) in each message are used to locate the element with the ith 
specified ranking. Since we need to find P - 1 elements with specified rankings concurrently, 
we have P - 1 fields in each message. 

The content of element Ekj sent by P; may have two different meanings depending on 
whether j equals i or not. Element Ek; sent by P; contains an element in P;'s list which P; likes 
to find out the ranking of this element among all elements in all processors. P; achieves this 
goal using the counting method described above after receiving the following P - 1 messages. 
For element Ekj, j ~ i, sent by P;, it contains a number  which specifies that how many 
elements in P;'s list is smaller than the element Ekj sent by Pj in Pj 's  last broadcast.  This will 
help Pj in finding the overall ranking of E~j broadcast by Pj in its last broadcast.  

To find out the overall ranking of element Ek; sent by P;, P; simply adds up all the elements 
Ek; in the following ( P  - 1) broadcast messages sent by Pj(j  4: i) and the ranking of Ek; in P / s  
local list. Whenever a processor, say P;, finds that element Ek; has the k th  prespecified 
ranking, it broadcasts a special message in its next broadcasting. This special message places 
the element with the k th pre-specified ranking, which is just found, in Ek~ and a '&'  in each 
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16 39 13 22 
19 69 28 31 
61 91 47 43 
85 122 115 58 
109 181 130 64 
202 211 147 67 
208 232 151 79 
226 247 153 101 
244 250 175 107 
253 259 187 I24 
269 274 199 133 
282 289 205 145 
286 304 235 160 
311 313 241 169 
316 326 262 184 
322 331 265 191 
329 337 271 196 
343 341 292 217 
347 352 297 223 
349 361 301 228 
P1 P2 P3 P4 

Fig. 1. Input data for Example 1. 

e lement  Ekj  (1 ~<j ~< P ,  j 4: i )  to let all o ther  processors  know that  the e lement  Eki is the 
e lement  with the k th pre-speci f ied  rank ing  to be  found.  

Example 1. In this example  we show how messages are sent  using this a lgor i thm assuming 
N = 80 and P = 4. The  input  da t a  is shown in Fig. 1 and  we wan t  to select the 20th, the 40th, 
and  the 60th e lements  concurrent ly .  The  messages sent  using this a lgor i thm are  shown in Fig. 2. 
As shown in Fig. 2, we find that  109, 205, and  282 are  the e lements  to be  found.  

L e m m a  1. The communication element complexity of the distributed concurrent selection algorithm 
is O( p31g( N / P ) ) .  In addition, the communication message complexity is O( P .  lg( N / P  )). 

Proof. We define a run to be  that  every processor  b roadcas t s  in turn  once; hence, there  are  P 
messages per  run. Us ing  b ina ry  searching, the n u m b e r  of  runs required to comple te  the 
a lgor i thm is uppe r  b o u n d e d  by  lg (N/P) .  Hence,  the total  n u m b e r  of  messages sent  has a 
complex i ty  of  O(P.  lg(N/P)) .  Since each message conta ins  P ( P  - 1) e lements;  hence, the to ta l  
n u m b e r  of e lements  sent  across the ne twork  in Step 2 has a complex i ty  of  O ( P  3. I g ( N / P ) ) .  [] 

Lemma 2. The computation time complexity of the distributed concurrent selection algorithm is 
o (  e 2- lg2( N / P  )). 

Proof. Before a message is sent, the value of  each e lement  has to be  de te rmined .  F o r  P~ to 
de te rmine  the value of  each Eke(1 ~< k ~< P - 1), Pi has to add  P n u m b e r  together,  which has  a 
c o m p u t a t i o n  complex i ty  of O ( P ) .  Since there are P -  1 such Ekis, the total  c o m p u t a t i o n  
complex i ty  incur red  is O(P2) .  F o r  Pi to de te rmine  Ekj (1 ~< k ~< P - 1 and  j ~ i) ,  Pi has to do  
a b ina ry  searching,  which has a compu ta t i on  complex i ty  of  O(Ig(N/P)) .  Since there are 
( P -  1) 2 such Ekjs ,  the to ta l  c o m p u t a t i o n  complex i ty  incurred  is O ( P  2. lg (N/P)) .  Hence,  the 
c o m p u t a t i o n  complex i ty  incur red  by  a message is O ( P  2. lg (N/P)) .  Since the n u m b e r  of  
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P1 

P2 

P3 

P4 

P1 

P2 

P3 

P4 

PI 

P2 

P3 

P21 
P3 

253 . . . . . . . . .  253 . . . . . . . . .  253 . . . . . . . . .  

9 259 . . . . . .  9 259 . . . . . .  9 259 . . . . . .  

14 14 187 --- 14 14 187 --- 14 14 187 --- 

20 20 15 124 20 20 15 124 20 20 15 124 

109 10 5 5 109 10 5 5 316 10 5 5 

3 18I 5 4 3 181 5 4 14 326 5 4 

3 9 130 4 3 9 262 4 20 20 262 4 

9 14 10 64 9 14 20 184 20 20 20 184 

109 & & & 208 5 10 5 282 16 10 5 

& & & & 5 232 10 5 11 289 10 5 

& & & & 12 12 205 9 17 17 271 9 

& & & & i7 20 17 196 20 20 20 196 

& & & & 202 8 6 5 282 & & & 

& & & & 5 211 5 5 & & & & 

& & & & & & 205 & & & & & 

Fig. 2. The messages sent in Example 1. Each row represents a message. 

messages  r e q u i r e d  by  the  a l g o r i t h m  is b o u n d e d  by  P l g ( N / P ) ,  the  to ta l  c o m p u t a t i o n  c o m p l e x -  

i ty  is O ( P  3 • lg2(N/P)) .  H o w e v e r ,  s ince all P p roces so r s  w o r k  c o n c u r r e n t l y  at all  t ime,  h e n c e  
the  c o m p u t a t i o n  t i m e  c o m p l e x i t y  is O ( P  2- lg2(N/P)) .  [] 

3 The distributed selectsort sorting algorithm 

T h e  a p p r o a c h  of  this so r t ing  a l g o r i t h m  is f irst  to  f ind  the  ( i N / P ) t h  r a n k e d  e l e m e n t s  for  all i 

f r o m  1 to P -  1. W e  de f ine  these  e l e m e n t s  as the  delimiters. Then ,  e l e m e n t s  w i t h  va lues  

b e t w e e n  the  va lues  of  the  ( i  - 1) th  a n d  the  i t h  de l imi t e r s  wil l  be  sent  to Pi fo r  so r t ing  by  each  

p r o c e s s o r  to c o m p l e t e  the  a lgo r i thm.  A c c o r d i n g l y ,  this a l g o r i t h m  is p a r t i t i o n e d  in to  4 s teps  as 

fol lows.  N o t e  tha t  i f  all  P p rocesso r s  can  be  w o r k i n g  at the  s a m e  t ime  in a s tep in  the  a lgo r i t hm,  
we  a d d  concurrently in tha t  step. 

Algorithm 
Step  1. F o r  i = 1 to P do  concurrently Pi sorts  i ts loca l  l ist  us ing  a k n o w n  o p t i m a l  s equen t i a l  

so r t ing  a l g o r i t h m  (e.g. qu icksor t ) .  

S tep  2. F o r  i = 1 to ( P  - 1) do  concurrently f ind  the  ( i N / P ) t h  e l e m e n t  (i.e. the  i t h  de l imi t e r )  

us ing  the  d i s t r i b u t e d  c o n c u r r e n t  se lec t ion  a l g o r i t h m  d e s c r i b e d  in  Sec t i on  2. 

S tep  3. F o r  i = 1 to P do  sequen t i a l l y  Pi b r o a d c a s t s  all  e l emen t s  w h i c h  s h o u l d  be  sent  to o t h e r  

p rocesso r s  in a message .  A t  the  s a m e  t ime,  Pj  l i s tens  to the  b roadcas t s ,  and  cop ies  all 

e l emen t s  w i t h  va lues  b e t w e e n  ( j -  1) th and  the  j t h  de l imi t e r s  to its loca l  list. 

S tep  4. F o r  i = 1 to P do  concurrently Pi merges  all  the  P subl is ts  sent  to it  i n t o  o n e  so r t ed  list. 

T h e o r e m  1. The computation time complexity of the algorithm is O( ( N / P ) lgN + p 21g 2 ( N / P ) ) 
and the communication element complexity is O( N + P 3 l g ( N I P ) ) .  
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Proof. The computational time complexity of Step 1 is O((N/P) lg(N/P))  for each processor 
since the list in each processor has N / P  elements. The computat ion time complexity and the 
communication element complexity of Step 2 are provided in Lemmas 1 and 2. In Step 3, each 
element will be broadcast at most once from the processor it initially resides to the processor it 
should finally reside. Hence, the communication element complexity is at most N. The 
computation time complexity of Step 3 is also O ( N )  to prepare the messages for all elements. 
The computation time complexity of Step 4 is O((N/P) .  lgP)  for each processor since each 
processor simply merges P sorted sublists such that the computat ion time complexity is 
O((N/P) .  lgP).  [] 

Theorem 2. The communication message complexity of the sorting algorithm is O( Plg( N / P  )). 

Proof. We now find the number of messages required by Steps 2 and 3. Step 2 requires 
O(P. lg(N/P)) messages as stated in Lemma 1. For Step 3, each processor broadcasts a 
message containing all elements to be sent to other processors. Each processor extracts the part  
of elements destined for it. Hence, Step 3 requires P messages. Therefore, the total number  of 
messages required by the algorithm is O( Plg( N / P )  + P) = O( PIg( N/P)).  [] 

One advantage of this algorithm is that in Steps 2 and 3 we can send multiple elements per 
message. As mentioned in the Introduction, this reduces the communication processing time 
significantly. Also note that all communication is well scheduled so that no collisions will occur 
if the algorithm is applied on a multi-access broadcast channel. (A multi-access broadcast 
channel is a broadcast communication channel which can be accessed by all stations. However, 
a collision will occur if two or more stations transmit at the same time. The well known 
Ethernet is an example of a multi-access broadcast channel.) Nevertheless, there are some 
inefficiencies in Step 2 which will be improved in the following section. 

4 The distributed parameterized selectsort sorting algorithm 

In this section we make a slight change in Step two of the previous algorithm to obtain a 
parameterized sorting algorithm which reduces the communication requirement dramatically 
with a slight sacrifice in computation. Since communication is more expensive than computa- 
tion, this modification gives us a big save. The most significant effect of this parameterized 
algorithm is that the communication message complexity of Step 2 is no longer a function of N. 
This makes our algorithm a very good algorithm for large N. 

Step 2 is modified such that we do not have to find exactly the ( iN/P)th  element as the ith 
delimiter. Rather, we accept any element whose ranking is between [ i N / P -  (N/P) . /£ /100]  
and [ i N / P + ( N / P ) . K / I O 0 ]  as the i th delimiter for a chosen parameter  K(O<~K4 50). 
Hence, we choose the ith delimiter as the first element found in Step 2 with a ranking between 
[iU/P - ( N / P ) .  K/100] and [iU/P + ( N / P ) .  K/100] for I ~< i ~< P - 1. 

Algorithm 
Step 1. For i = 1 to P do concurrently Pg sorts its list using a known optimal sequential sorting 

algorithm. 
Step 2. Select a value between 0 and 50 for ' K  ', for i = I to ( P  - 1) do concurrently find the 

first element with a ranking between [ i N / P -  (N/P) . /£ /100]  and [iN/P + ( N / P ) .  
/£/100] as the i th delimiter using the distributed concurrent selection algorithm. 

Step 3. For i = 1 to P do sequentially Pi broadcasts all elements which should be sent to other 
processors in a message. At the same time, Pj listens to the broadcasts, and copies all 
elements with values between the ( j  - 1)th and the j t h  delimiters to its local list. 

Step 4. For i = 1 to P do concurrently Pg merges all the sublists sent to it into one sorted list. 
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Lemma 3. The number of runs required in Step 2 of the parameter&ed algorithm is upper bounded 
by lg50/K. 

Proof. We can group the N elements into 1 0 0 / 2 K  groups where each group contains 
N-  2K/100  elements. Whenever the algorithm finds any of the elements in a group containing 
the element with the ( iN/P) th  ranking, this element is regarded as the ith delimiter. Hence, 
using binary searching on these 1 0 0 / 2 K  groups, the number of searches is upper bounded by 
lg50/K. [] 

Lemma 4. The communication element complexity of Step 2 of the parameterized algorithm is 
O(p3). 

Proof. Since each run contains P messages and each message contains p2 elements and the 
number of runs is upper bounded by lg50/K; hence, the communication element complexity is 
O(p3). [] 

Lemma 5. The computation complexity of Step 2 is O( P21g( N/P)) .  

Proof. This proof follows directly from Lemmas 2 and 3. [] 

Note that the communication message complexity and the communication element complex- 
ity are independent of N; hence the communication processing time can be greatly reduced for 
large N. However, by this saving in communication, we also incur more computation in Step 4. 
In Step 4, all processors no longer contain the same number of elements to be sorted as in the 
original algorithm. Nonetheless, the maximum number of elements to be sorted given to a 
processor is at most (1 + 2/£/100) N/P .  Therefore, the computation time required for Step 4 is 
at most 2K% more than the original algorithm. Moreover, the memory requirement will also be 
increased to store these elements. However, the computation time complexity remains un- 
changed since K is a constant. Furthermore, note that the increase in computation time 
complexity in Step 4 is dominated by the computation time complexity in Step 1. Hence, this 
increase in computation in Step 4 has no effect on the overall computation time complexity. 

Another advantage of this modification is that by adjusting the value of K, we are able to 
trade between communication requirement and computation and memory requirement. A 
larger K will incur less communication and more computation and memory than a smaller K. 
Moreover, by taking a system configuration (e.g. computational power, communication band- 
width, etc.) into consideration, we can balance the computation requirement and communica- 
tion requirement by adjusting the value of K. 

Theorem 3. The computation time complexity of the parameterized algorithm is O(( N / P  )lgN + 
p21g( N / P ) )  and the communication element complexity is O( N + p3). 

Proof. The proof can easily be derived from Theorem 1 and Lemmas 4 and 5. [] 

Corollary 1. / f  N >  p3, then the computation time complexity is O( (N /P) IgN)  and the 
communication element complexity is O( N ). Both are optimal. 

Theorem 4. The communication message complexity of the parameterized algorithm is O( P ). 

Proof. We now find the number of messages required by Steps 2 and 3. Step 2 requires 
O(Plg(IOO/K)) = O(P)  messages. As explained in the proof of Theorem 2, the number of 
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messages required by Step 3 is at most P. Therefore, the total number of messages required by 
the algorithm is O(P). [] 

5 Conclusions 

The contribution of the parameterized selectsort sorting algorithm is that the number of 
messages sent during the algorithm depends only on P and not on N. This will significantly 
reduce the communication processing time in a broadcast network when N is large. Addition- 
ally, we show that when N >~ p3, the computation time complexity is O((NlgN)/P), which is 
optimal with P processors. More importantly, in the parameterized algorithm, we provide a 
parameterized way to trade-off among communication requirement, processing requirement, 
and memory requirement. This allows the algorithm to be fine-tuned under various system 
configurations. 

References 

[1] R. Dechter and L. Kleinrock, Broadcast communications and distributed algorithms, IEEE Trans. Comput. C-36 
(3) (March 1986) 210-219. 

[2] J. Marberg, Distributed algorithms for multi-channel broadcast networks, Ph.D. dissertation, Computer Science 
Department, UCLA, 1986. 

[3] D. Rotem, N. Santoro and J.B. Sidney, Distributed sorting, IEEE Trans. Comput. C-34 (4) (April 1985) 372-376. 
[4] L.M. Wegner, Sorting a distributed file in a network, in: Proc. 1982 Conf. Information Sci. Systems, Princeton, 

New Jersey (March 1982) 505-509. 
[5] S. Zaks, Optimal distributed algorithms for sorting and ranking, IEEE Trans. Comput. C-34 (4) (April 1985) 

376-379. 
[6] S.P. Levitan, Algorithms for a broadcast protocol multiprocessor, in: Proc. 3rd Internat. Conf. on Distributed 

Computing Systems, (1982) 666-671. 
[7] K.V.S. Ramarao, Distributed sorting on local area networks, IEEE Trans. Comput. 37 (2) (Feb. 1988) 239-243. 
[8] J. Marberg and E. Gafni, An optimal shout-echo algorithm for selection in distributed sets, in: Proc. 23rd Ann. 

Allerton Conf. on Communication, Control, and Computing Univ. of Illinois at Urbana Champaign (1985) 283-291. 
[9] D. Rotem, N. Santoro and J.B. Sidney, A shout-echo algorithm for finding the median of a distributed set, in: 

Proc. 14th S.E. Conf. on Combinatorics, Graph Theory and Computing. Boca Raton, FL (1983) 311-318. 
[10] N. Santoro and J.B. Sidney, A reduction technique for distributed selection: I, Tech. Rep. SCS-TR-23, School of 

Computer Science, Carleton Univ., Ottawa, Canada, 1983. 


